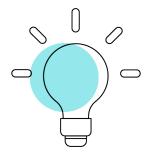


Topic Test Summer 2022


Pearson Edexcel GCE Mathematics (9MA0)

Paper 1 and Paper 2

Topic 10: Vectors

Contents

General guidance to Topic Tests	3
Revise Revision Guide content coverage	4
Questions	5
Mark Scheme	19

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:

www.pearson.com/uk

General guidance to Topic Tests

Context

• Topic Tests have come from past papers both <u>published</u> (those materials available publicly) and unpublished (those currently under padlock to our centres) presented in a different format to allow teachers to adapt them for use with candidates.

Purpose

- The purpose of this resource is to provide qualification-specific sets/groups of questions covering the knowledge, skills and understanding relevant to this Pearson qualification.
- This document should be used in conjunction with the advance information for the subject as well as general marking guidance for the qualification (available in published mark schemes).

Revise Revision Guide content coverage

The questions in this topic test have been taken from past papers, and have been selected as they cover the topic(s) most closely aligned to the <u>A level</u> advance information for summer 2022:

- Topic 10: Vectors
 - Use vectors to solve a problem in pure mathematics

The focus of content in this topic test can be found in the Revise Pearson Edexcel A level Mathematics Revision Guide. Free access to this Revise Guide is available for front of class use, to support your students' revision.

Contents	Revise Guide	Level
	page reference	
Pure Mathematics	1-111	A level
Statistics	112-147	A level
Mechanics	148-181	A level

Content on other pages may also be useful, including for synoptic questions which bring together learning from across the specification.

Questions

Question T10_Q1

2.	Relative to a fixed origin O ,	
	the point A has position vector $(2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$,	
	the point B has position vector $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$,	
	and the point C has position vector $(a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k})$, where a is a constant and $a < 0$	
	D is the point such that $\overrightarrow{AB} = \overrightarrow{BD}$.	
	(a) Find the position vector of D .	(2)
	Given $ \overrightarrow{AC} = 4$	
	(b) find the value of a.	(3)

Question 2 continued	

10.

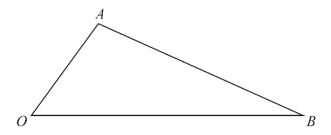


Figure 7

Figure 7 shows a sketch of triangle *OAB*.

The point C is such that $\overrightarrow{OC} = 2\overrightarrow{OA}$.

The point M is the midpoint of AB.

The straight line through C and M cuts OB at the point N.

Given $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$

(a) Find \overrightarrow{CM} in terms of **a** and **b**

(2)

(b) Show that $\overrightarrow{ON} = \left(2 - \frac{3}{2}\lambda\right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b}$, where λ is a scalar constant.

(2)

(c) Hence prove that ON: NB = 2:1

(2)

Question 10 continued		

Question 10 continued		

Question 10 continued	

3. Relative to a fixed origin O

 point A has position vector 2i + 5j - 6k point B has position vector 3i - 3j - 4k point C has position vector 2i - 16j + 4k 	
(a) Find \overrightarrow{AB}	(2)
(b) Show that quadrilateral <i>OABC</i> is a trapezium, giving reasons for your answer.	(2)

Question 3 continued	

2. Relative to a fixed origin, points P, Q and R have position vectors \mathbf{p} , \mathbf{q} and \mathbf{r} respectively. Given that • P, Q and R lie on a straight line • Q lies one third of the way from P to Rshow that $\mathbf{q} = \frac{1}{3}(\mathbf{r} + 2\mathbf{p})$ (3)

Question 2 continued	

6.

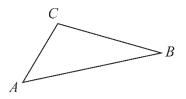


Figure 1

Figure 1 shows a sketch of triangle ABC.

Given that

•
$$\overrightarrow{AB} = -3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k}$$

• $\overrightarrow{BC} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$

•
$$\overrightarrow{BC} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$$

(a) find \overrightarrow{AC}

(2)

(b) show that $\cos ABC = \frac{9}{10}$

(3)

Question 6 continued	

Question 6 continued	

Question 6 continued	

Mark Scheme

Question T10_Q1

2 A A B B A B B A B B	Questi	ion Scheme	Marks	AOs
(a)	_	$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}, \ \overrightarrow{OB} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}, \ \overrightarrow{OC} = a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}, \ a < 0$		
or $\overline{OD} = \overline{OB} + \overline{BD} = \overline{OB} + \overline{AB} = \overline{OB} + \overline{OB} - \overline{OA} = 2\overline{OB} - \overline{OA}$ or $\overline{OD} = \overline{OB} + \overline{BD} = \overline{OB} + \overline{AB} = \overline{OA} + \overline{AB} + \overline{AB} = \overline{OA} + 2\overline{AB}$ $= \begin{pmatrix} 4 \\ -2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ -2 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -4 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ -4 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 $		$\overrightarrow{AB} = \overrightarrow{BD}, \overrightarrow{AB} = 4$		
	(a)	E.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB}$		
		or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{OB} - \overrightarrow{OA}$		
		or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AB}$		
		$= \begin{pmatrix} 4 \\ -2 \end{pmatrix} + \begin{pmatrix} 4 \\ -2 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \end{pmatrix} \left\{ = \begin{pmatrix} 4 \\ -2 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \end{pmatrix} \right\}$		
$\mathbf{or} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ -2 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 5 \\ -5 \\ 7 \end{pmatrix}$ $= \begin{pmatrix} 6 \\ -7 \\ 10 \end{pmatrix} \text{ or } 6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} \qquad \qquad \mathbf{A1} \qquad 1.1\mathbf{b}$ $= \begin{pmatrix} 6 \\ -7 \\ 10 \end{pmatrix} \text{ or } 6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k} \qquad \qquad \mathbf{A1} \qquad 1.1\mathbf{b}$ $= \begin{pmatrix} (2) \\ -7 \\ 10 \end{pmatrix} = \begin{pmatrix} (2) \\ -7 \\ 10 \end{pmatrix} = \begin{pmatrix} (2) \\ -7 \\ 10 \end{pmatrix} = \begin{pmatrix} (2) \\ -7 \\ -7 \end{pmatrix} = \begin{pmatrix} (2) \\ -7 \\ -$			M1	2.10
(b) $(a-2)^2 + (5-3)^2 + (-2-4)^2 \qquad M1 \qquad 1.1b$ $ AC = 4 \Rightarrow (a-2)^2 + (5-3)^2 + (-2-4)^2 = (4)^2$ $\Rightarrow (a-2)^2 = 8 \Rightarrow a = \text{ or } \Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a =$ $ (as \ a < 0 \Rightarrow) \ a = 2 - 2\sqrt{2} \text{ (or } a = 2 - \sqrt{8}) \qquad A1 \qquad 1.1b$ $ (3) \rangle$ $ (5 \text{ marks})\rangle$ Notes for Question 2 (a) M1: Complete applied strategy to find a vector expression for OD A1: See scheme Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4i - 2j + 3k) + (2i + 3j - 4k) - (4i - 2j + 3k) = (4i - 2j + 3k) + (-2i + 5j - 7k) = (2i + 3j - 4k)$ Note: Writing e.g. $OD = OB + AB$ or $OD = 2OB - OA$ with no other work is M0 Note: Finding coordinates, i.e. $(6, -7, 10)$ without reference to the correct position vectors is AO Note: Allow M1A1 for writing down $6i - 7j + 10k$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ AC = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		$\mathbf{or} = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \left\{ = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$	MI	3.1a
(b) $ (a-2)^2 + (5-3)^2 + (-2-4)^2 $ $ (a-2)^2 + (5-3)^2 + (-2-4)^2 = (4)^2 $ $ (aM1) $ $ (a - 2)^2 = 8 \Rightarrow a = \text{ or } \Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = $ $ (as \ a < 0 \Rightarrow) \ a = 2 - 2\sqrt{2} \text{ (or } a = 2 - \sqrt{8}) $ $ A1 $ $ (3) $ $ (5 \text{ marks}) $ $ A1 $ $ A2 $ $ A3 $ $ A4 $ $ A4 $ $ A4 $ $ A1 $ $ A5 $ $ A5 $ $ A6 $ $ A6 $ $ A6 $ $ A7 $ $ A7 $ $ A8 $ $ A8 $ $ A9 $		$= \begin{pmatrix} 6 \\ -7 \\ 10 \end{pmatrix} \text{or} 6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$	A1	1.1b
			(2)	
$\Rightarrow (a-2)^2 = 8 \Rightarrow a = \dots \text{ or } \Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = \dots$ $(as \ a < 0 \Rightarrow) \ a = 2 - 2\sqrt{2} \text{ (or } a = 2 - \sqrt{8}) $ A1 1.1b (5 marks) Notes for Question 2 (a) M1: Complete applied strategy to find a vector expression for \overline{OD} A1: See scheme Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}) = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$ Note: Writing e.g. $OD = OB + AB$ or $OD = 2OB - OA$ with no other work is M0 Note: Finding coordinates, i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ AC = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a = \dots$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied	(b)	$(a-2)^2 + (5-3)^2 + (-2-4)^2$	M1	1.1b
(as $a < 0 \Rightarrow$) $a = 2 - 2\sqrt{2}$ (or $a = 2 - \sqrt{8}$) A1 1.1b (3) Notes for Question 2 (a) M1: Complete applied strategy to find a vector expression for \overline{OD} A1: See scheme Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}) = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$ Note: Writing e.g. $OD = OB + AB$ or $OD = 2OB - OA$ with no other work is M0 Note: Finding coordinates, i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ \overline{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied			dM1	2.1
Notes for Question 2 (a) M1: Complete applied strategy to find a vector expression for \overline{OD} A1: See scheme Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}) = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$ Note: Writing e.g. $OD = OB + AB$ or $OD = 2OB - OA$ with no other work is M0 Note: Finding coordinates, i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ \overline{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		$\Rightarrow (a-2)^2 = 8 \Rightarrow a = \dots$ or $\Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = \dots$		
Notes for Question 2 (a) M1: Complete applied strategy to find a vector expression for \overrightarrow{OD} A1: See scheme Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})=(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+5\mathbf{j}-7\mathbf{k})=(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})$ Note: Writing e.g. $\overrightarrow{OD}=\overrightarrow{OB}+\overrightarrow{AB}$ or $\overrightarrow{OD}=2\overrightarrow{OB}-\overrightarrow{OA}$ with no other work is M0 Note: Finding coordinates, i.e. $(6,-7,10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i}-7\mathbf{j}+10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of \overrightarrow{D} (b) M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ \overrightarrow{AC} =4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a=$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a=2-2\sqrt{2}$ Note: Writing $a=2\pm2\sqrt{2}$, without evidence of rejecting $a=2\pm2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2-\sqrt{8}$ or $\frac{4-\sqrt{32}}{2}$ for A1, and isw can be applied		(as $a < 0 \Rightarrow$) $a = 2 - 2\sqrt{2}$ (or $a = 2 - \sqrt{8}$)		1.1b
Notes for Question 2 (a) M1: Complete applied strategy to find a vector expression for \overline{OD} A1: See scheme Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})=(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+5\mathbf{j}-7\mathbf{k})=(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})$ Note: Writing e.g. $OD = OB + AB$ or $OD = 2OB - OA$ with no other work is M0 Note: Finding coordinates, i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i}-7\mathbf{j}+10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ AC = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		L		(manulca)
(a) M1: Complete applied strategy to find a vector expression for \overline{OD} A1: See scheme Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})-(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})=(4\mathbf{i}-2\mathbf{j}+3\mathbf{k})+(-2\mathbf{i}+5\mathbf{j}-7\mathbf{k})=(2\mathbf{i}+3\mathbf{j}-4\mathbf{k})$ Note: Writing e.g. $OD = OB + AB$ or $OD = 2OB - OA$ with no other work is M0 Note: Finding coordinates, i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i}-7\mathbf{j}+10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ \overline{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		Notes for Ouestion 2	(5	marks)
A1: See scheme Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}) = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$ Note: Writing e.g. $OD = OB + AB$ or $OD = 2OB - OA$ with no other work is M0 Note: Finding coordinates, i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ \overrightarrow{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied	(a)	•		
Note: Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}) = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$ Note: Writing e.g. $OD = OB + AB$ or $OD = 2OB - OA$ with no other work is M0 Note: Finding coordinates, i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on $ \overline{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied	M1:	Complete <i>applied</i> strategy to find a vector expression for \overrightarrow{OD}		
Note: Writing e.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{AB}$ or $\overrightarrow{OD} = 2\overrightarrow{OB} - \overrightarrow{OA}$ with no other work is M0 Note: Finding $\overrightarrow{coordinates}$, i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of $\overrightarrow{correctly}$ applying Pythagoras' Theorem on $ \overrightarrow{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied				
Note: Finding <i>coordinates</i> , i.e. $(6, -7, 10)$ without reference to the correct position vectors is A0 Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ \overline{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied	Note:	Give M0 for subtracting the wrong way wrong to give e.g. $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}) - (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = (4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) + (-2\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}) = (2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$		
Note: Allow M1A1 for writing down $6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$ with no working Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overline{OA} and \overline{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ \overline{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied	Note:			
Note: M1 can be implied for at least two correct components in their position vector of D (b) M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ \overrightarrow{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		-		
 (b) M1: Finds the difference between \$\overline{OA}\$ and \$\overline{OC}\$, then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of \$correctly\$ applying Pythagoras' Theorem on \$ \overline{AC} \$ = 4 and using a correct method of solving their resulting quadratic equation to find at least one of \$a =\$ Note: Condone at least one of either awrt 4.8 or awrt −0.83 for the dM mark A1: Obtains only one exact value, \$a = 2 - 2√2\$ Note: Writing \$a = 2 ± 2√2\$, without evidence of rejecting \$a = 2 + 2√2\$ is A0 Note: Allow exact alternatives such as \$2 - √8\$ or \$\frac{4 - √32}{2}\$ for A1, and isw can be applied 				
M1: Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} , then squares and adds each of the 3 components Note: Ignore labelling dM1: Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ \overrightarrow{AC} = 4$ and using a correct method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		ivil can be implied for at least two correct components in their position vector	or oi <i>D</i>	
 Note: Ignore labelling dM1: Complete method of correctly applying Pythagoras' Theorem on AC = 4 and using a correct method of solving their resulting quadratic equation to find at least one of a = Note: Condone at least one of either awrt 4.8 or awrt −0.83 for the dM mark A1: Obtains only one exact value, a = 2 − 2√2 Note: Writing a = 2 ± 2√2, without evidence of rejecting a = 2 + 2√2 is A0 Note: Allow exact alternatives such as 2 − √8 or 4 − √32/2 for A1, and isw can be applied 		Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} then squares and adds each of	the 3 compone	ents
 dM1: Complete method of <i>correctly</i> applying Pythagoras' Theorem on AC = 4 and using a correct method of solving their resulting quadratic equation to find at least one of a = Note: Condone at least one of either awrt 4.8 or awrt −0.83 for the dM mark A1: Obtains only one exact value, a = 2 − 2√2 Note: Writing a = 2 ± 2√2, without evidence of rejecting a = 2 + 2√2 is A0 Note: Allow exact alternatives such as 2 − √8 or 4 − √32/2 for A1, and isw can be applied 				
method of solving their resulting quadratic equation to find at least one of $a =$ Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied	dM1:			
Note: Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied				
A1: Obtains only one exact value, $a = 2 - 2\sqrt{2}$ Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied	Note:			
Note: Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Note: Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied				
Note: Allow exact alternatives such as $2-\sqrt{8}$ or $\frac{4-\sqrt{32}}{2}$ for A1, and isw can be applied	Note:			
	Note:	Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		
	Note:			

Question	Scheme	Marks	AOs
10			
	$\stackrel{C}{\wedge}$		
	$A \nearrow$		
	M		
	O N B		
	$\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OB} = \mathbf{b}$		
(a)	$\left\{ \overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} = \overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB} \Rightarrow \right\} \overrightarrow{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$		
	$\left\{ \overrightarrow{CM} = \overrightarrow{CB} + \overrightarrow{BM} = \overrightarrow{CB} + \frac{1}{2}\overrightarrow{BA} \Rightarrow \right\} \overrightarrow{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$	M1	3.1a
	$\Rightarrow \overrightarrow{CM} = -\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} (needs \ to \ be \ simplified \ and \ seen \ in \ (a) \ only)$	A1	1.1b
		(2)	
(b)	$ON = OC + CN \Rightarrow ON = OC + \lambda CM$	M1	1.1b
	$O\dot{N} = 2\mathbf{a} + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \Rightarrow O\dot{N} = \left(2 - \frac{3}{2}\lambda \right) \mathbf{a} + \frac{1}{2}\lambda \mathbf{b} *$	A1*	2.1
	(2)	(2)	
(c) Way 1	$\left(2-\frac{3}{2}\lambda\right)=0 \Rightarrow \lambda=$	M1	2.2a
	$\lambda = \frac{4}{3} \Rightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Rightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow ON : NB = 2:1 *$	A1*	2.1
		(2)	
(c) Way 2	$\overrightarrow{ON} = \mu \mathbf{b} \implies \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} = \mu \mathbf{b}$		
	$\mathbf{a} \colon \left(2 - \frac{3}{2}\lambda\right) = 0 \Rightarrow \lambda = \dots \left\{ \mathbf{b} \colon \frac{1}{2}\lambda = \mu \& \lambda = \frac{4}{3} \Rightarrow \mu = \frac{2}{3} \right\}$	M1	2.2a
	$\lambda = \frac{4}{3} \text{ or } \mu = \frac{2}{3} \Rightarrow O\vec{N} = \frac{2}{3}\mathbf{b} \left\{ \Rightarrow N\vec{B} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow ON : NB = 2:1 *$	A1*	2.1
		(2)	
		(6 marks)

Questi	tion Scheme Marks AOs					
10 (c) Way :		$\overrightarrow{OB} = \overrightarrow{ON} + \overrightarrow{NB} \implies \mathbf{b} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b} + K\mathbf{b}$				
		$\mathbf{a}: \left(2 - \frac{3}{2}\lambda\right) = 0 \Rightarrow \lambda = \dots \left\{ \mathbf{b}: \ 1 = \frac{1}{2}\lambda + K \& \lambda = \frac{4}{3} \Rightarrow K = \frac{1}{3} \right\}$	M1	2.2a		
		$\lambda = \frac{4}{3} \text{ or } K = \frac{1}{3} \Rightarrow O\vec{N} = \frac{2}{3}\mathbf{b} \text{ or } N\vec{B} = \frac{1}{3}\mathbf{b} \Rightarrow ON: NB = 2:1 *$	A1	2.1		
10 (c)	`		(2)			
Way		$\overrightarrow{ON} = \mu \mathbf{b} \& \overrightarrow{CN} = k\overrightarrow{CM} \Rightarrow \overrightarrow{CO} + \overrightarrow{ON} = k\overrightarrow{CM}$				
		$-2\mathbf{a} + \mu \mathbf{b} = k \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right)$				
		$\mathbf{a}: -2 = -\frac{3}{2}k \Rightarrow k = \frac{4}{3}, \mathbf{b}: \ \mu = \frac{1}{2}k \ \Rightarrow \mu = \frac{1}{2}\left(\frac{4}{3}\right) = \dots$	M1	2.2a		
		$\mu = \frac{2}{3} \Rightarrow \overrightarrow{ON} = \frac{2}{3}\mathbf{b} \left\{ \Rightarrow \overrightarrow{NB} = \frac{1}{3}\mathbf{b} \right\} \Rightarrow ON : NB = 2:1 *$	A1	2.1		
			(2)			
(a)		Notes for Question 10				
(a) M1:	Val	id attempt to find CM using a combination of known vectors a and b				
A1:		implified correct answer for \overrightarrow{CM}				
Note:	Giv 	e M1 for $\vec{CM} = -\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$ or $\vec{CM} = (-2\mathbf{a} + \mathbf{b}) + \frac{1}{2}(\mathbf{a} - \mathbf{b})$				
		or for $\left\{\overrightarrow{CM} = \overrightarrow{OM} - \overrightarrow{OC} \Rightarrow \right\} \overrightarrow{CM} = \frac{1}{2}(\mathbf{a} + \mathbf{b}) - 2\mathbf{a}$ only o.e.				
(b)						
M1:	_	$S ON = OC + \lambda CM$				
A1*: Note:		Correct proof Special Case				
11010.	Give SC M1 A0 for the solution $\overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \lambda \overrightarrow{CM}$					
	$\overline{ON} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \lambda \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} \right) \left\{ = \left(\frac{1}{2} - \frac{3}{2}\lambda \right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\lambda \right)\mathbf{b} \right\}$					
Note:	Giv	ernative 1: e M1 A1 for the following alternative solution: $\overrightarrow{A} = \overrightarrow{OA} + \overrightarrow{AM} + \overrightarrow{MN} \Rightarrow \overrightarrow{ON} = \overrightarrow{OA} + \overrightarrow{AM} + \mu \overrightarrow{CM}$				
	\overline{ON}	$\vec{\hat{J}} = \mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a}) + \mu \left(-\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}\right) = \left(\frac{1}{2} - \frac{3}{2}\mu\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}\mu\right)\mathbf{b}$				
	$\mu = \lambda - 1 \Rightarrow \overline{ON} = \left(\frac{1}{2} - \frac{3}{2}(\lambda - 1)\right)\mathbf{a} + \left(\frac{1}{2} + \frac{1}{2}(\lambda - 1)\right)\mathbf{b} \Rightarrow \overline{ON} = \left(2 - \frac{3}{2}\lambda\right)\mathbf{a} + \frac{1}{2}\lambda\mathbf{b}$					
(c)	Way 1, Way 2 and Way 3					
M1:		luces that $\left(2 - \frac{3}{2}\lambda\right) = 0$ and attempts to find the value of λ				
A1*:	_	rect proof				
(c)	Wa					
M1:		implete attempt to find the value of μ				
A1*:	Cor	rect proof				

	Notes for Question 10 Continued
Note:	Part (b) and part (c) can be marked together.
(a)	Special Case where the point C is believed to be below the origin O
Special	A
Case	M
	0 B
	c´
	Give Special Case M1 A0 in part (a) for $\left\{ \overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{AM} \Rightarrow \right\} \overrightarrow{CM} = 3\mathbf{a} + \frac{1}{2}(\mathbf{b} - \mathbf{a})$
	Give special case WIT At in part (a) for $\{CM = CA + AM \Rightarrow\} CM = 3\mathbf{a} + -(\mathbf{b} - \mathbf{a})$
	which leads to $\overrightarrow{CM} = \frac{5}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$

Question	Scheme	Marks	AOs
3 (a)	$\overrightarrow{AB} = (3\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}) - (2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k})$	M1	1.1b
	$= \mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$	A1	1.1b
		(2)	
(b)	States $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$	M1	1.1b
	Explains that as OC is parallel to AB , so $OABC$ is a trapezium.	A1	2.4
		(2)	
			(4 marks)
Notes:			

(a)

M1: Attempts to subtract either way around. If no method is seen it is implied by two of $\pm 1i \pm 8j \pm 2k$.

A1:
$$\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$$
 or $\begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$ but not $(1, -8, 2)$

(b)

M1: Compares their i-8j+2k with 2i-16j+4k by stating any one of

•
$$\overrightarrow{OC} = 2 \times \overrightarrow{AB}$$

$$\bullet \quad \begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$$

• $\overrightarrow{OC} = \lambda \times \overrightarrow{AB}$ or vice versa

This may be awarded if AB was subtracted "the wrong way around" or if there was one numerical slip

A1: A full explanation as to why *OABC* is a trapezium.

Requires fully correct calculations, so part (a) must be $\overrightarrow{AB} = (\mathbf{i} - 8\mathbf{j} + 2\mathbf{k})$

It requires a reason and minimal conclusion.

Example 1:

 $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$, therefore OC is parallel to AB so OABC is a trapezium

Example 2:

A trapezium has one pair of parallel sides. As $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$, they are parallel, so \checkmark .

Example 3

As
$$\begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$$
, OC and AB are parallel, so proven

Example 4

Accept as $\overrightarrow{OC} = \lambda \times \overrightarrow{AB}$, they are parallel so true

Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with **only one** pair of parallel sides. Any calculations to do with sides *OA* and *CB* in this question may be ignored, even if incorrect.

Question Number	Scheme	Marks	AO's
2	Attempts any one of $ (\pm \overrightarrow{PQ} =) \pm (\mathbf{q} - \mathbf{p}), \ (\pm \overrightarrow{PR} =) \pm (\mathbf{r} - \mathbf{p}), \ (\pm \overrightarrow{QR} =) \pm (\mathbf{r} - \mathbf{q}) $ Or e.g.	M1	1.1b
	$(\pm \overrightarrow{PQ} =) \pm (\overrightarrow{OQ} - \overrightarrow{OP}), \ (\pm \overrightarrow{PR} =) \pm (\overrightarrow{OR} - \overrightarrow{OP}), \ (\pm \overrightarrow{QR} =) \pm (\overrightarrow{OR} - \overrightarrow{OQ})$ Attempts e.g. $\mathbf{r} - \mathbf{q} = 2(\mathbf{q} - \mathbf{p})$ $\mathbf{r} - \mathbf{p} = 3(\mathbf{q} - \mathbf{p})$ $\frac{2}{3}(\mathbf{q} - \mathbf{p}) = \frac{1}{3}(\mathbf{r} - \mathbf{q})$ $\mathbf{q} = \mathbf{p} + \frac{1}{3}(\mathbf{r} - \mathbf{p})$ $\mathbf{q} = \mathbf{r} + \frac{2}{3}(\mathbf{p} - \mathbf{r})$	dM1	3.1a
	E.g. $\Rightarrow \mathbf{r} - \mathbf{q} = 2\mathbf{q} - 2\mathbf{p} \Rightarrow 2\mathbf{p} + \mathbf{r} = 3\mathbf{q} \Rightarrow \mathbf{q} = \frac{1}{3}(\mathbf{r} + 2\mathbf{p})^*$	A1*	2.1
		(3)	(3 marks)

Notes:

M1: Attempts any of the relevant vectors by subtracting either way around. This may be implied by sight of any one of $\pm (q-p)$, $\pm (r-q)$ ignoring how they are labelled

dM1: Uses the given information and writes it correctly in vector form that if rearranged would give the printed answer

A1*: Fully correct work leading to the given answer. Allow OQ = ... as long as OQ has been defined as q earlier.

In the working allow use of P instead of p and Q instead of q as long as the intention is clear.

Question	Scheme	Marks	AOs
6(a)	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = -3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k} + \mathbf{i} + \mathbf{j} + 4\mathbf{k} = \dots$	M1	1.1b
	$= -2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$	A1	1.1b
		(2)	
(b)	At least 2 of $ (AC^2) = "2^2 + 3^2 + 1^2 ", (AB^2) = 3^2 + 4^2 + 5^2, (BC^2) = 1^2 + 1^2 + 4^2 $	M1	1.1b
	$2^{2} + 3^{2} + 1^{2} = 3^{2} + 4^{2} + 5^{2} + 1^{2} + 1^{2} + 4^{2} - 2\sqrt{3^{2} + 4^{2} + 5^{2}}\sqrt{1^{2} + 1^{2} + 4^{2}}\cos ABC$	M1	3.1a
	$14 = 50 + 18 - 2\sqrt{50}\sqrt{18}\cos ABC$ $\Rightarrow \cos ABC = \frac{50 + 18 - 14}{2\sqrt{50}\sqrt{18}} = \frac{9}{10}*$	A1*	2.1
		(3)	
	(b) Alternative		
	$AB^2 = 3^2 + 4^2 + 5^2$, $BC^2 = 1^2 + 1^2 + 4^2$	M1	1.1b
	$\overrightarrow{BA}.\overrightarrow{BC} = (3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + 4\mathbf{k}) = 27 = \sqrt{3^2 + 4^2 + 5^2} \sqrt{1^2 + 1^2 + 4^2} \cos ABC$	M1	3.1a
	$27 = \sqrt{50}\sqrt{18}\cos ABC \Rightarrow \cos ABC = \frac{27}{\sqrt{50}\sqrt{18}} = \frac{9}{10}$	A1*	2.1
		(5	marks)
	Notes		

(a)

M1: Attempts $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

There must be attempt to add not subtract.

If no method shown it may be implied by two correct components

A1: Correct vector. Allow
$$-2\mathbf{i} - 3\mathbf{j} - \mathbf{k}$$
 and $\begin{pmatrix} -2 \\ -3 \\ -1 \end{pmatrix}$ but not $\begin{pmatrix} -2\mathbf{i} \\ -3\mathbf{j} \\ -1\mathbf{k} \end{pmatrix}$

(b)

M1: Attempts to "square and add" for at least 2 of the 3 sides. Follow through on their \overrightarrow{AC} Look for an attempt at either $a^2 + b^2 + c^2$ or $\sqrt{a^2 + b^2 + c^2}$

M1: A correct attempt to apply a correct cosine rule to the given problem; Condone **slips** on the lengths of the sides but the sides must be in the correct position to find angle ABC

A1*: Correct completion with sufficient intermediate work to establish the printed result.

Condone different labelling, e.g. $ABC \leftrightarrow \theta$ as long as it is clear what is meant

It is OK to move from a correct cosine rule $14 = 50 + 18 - 2\sqrt{50}\sqrt{18}\cos ABC$

via
$$\cos ABC = \frac{54}{2\sqrt{50}\sqrt{18}}$$
 o.e. such as $\cos ABC = \frac{\left(5\sqrt{2}\right)^2 + \left(3\sqrt{2}\right)^2 - \left(\sqrt{14}\right)^2}{2 \times 5\sqrt{2} \times 3\sqrt{2}}$ to $\cos ABC = \frac{9}{10}$

Alternative:

M1: Correct application of Pythagoras for sides AB and BC or their squares

M1: Recognises the requirement for and applies the scalar product

A1*: Correct completion with sufficient intermediate work to establish the printed result